363 research outputs found

    Thermodynamics of the one-dimensional frustrated Heisenberg ferromagnet with arbitrary spin

    Full text link
    The thermodynamic quantities (spin-spin correlation functions <{\bf S}_0{\bf S}_n>, correlation length {\xi}, spin susceptibility {\chi}, and specific heat C_V) of the frustrated one-dimensional J1-J2 Heisenberg ferromagnet with arbitrary spin quantum number S below the quantum critical point, i.e. for J2< |J1|/4, are calculated using a rotation-invariant Green-function formalism and full diagonalization as well as a finite-temperature Lanczos technique for finite chains of up to N=18 sites. The low-temperature behavior of the susceptibility {\chi} and the correlation length {\xi} is well described by \chi = (2/3)S^4 (|J1|-4J2) T^{-2} + A S^{5/2} (|J1|-4J2)^{1/2} T^{-3/2} and \xi = S^2 (|J1|-4J2) T^{-1} + B S^{1/2} (|J1|-4J2)^{1/2} T^{-1/2} with A \approx 1.1 ... 1.2 and B \approx 0.84 ... 0.89. The vanishing of the factors in front of the temperature at J2=|J1|/4 indicates a change of the critical behavior of {\chi} and {\xi} at T \to 0. The specific heat may exhibit an additional frustration-induced low-temperature maximum when approaching the quantum critical point. This maximum appears for S=1/2 and S=1, but was not found for S>1.Comment: 8 pages, 7 figure

    A novel engine mount with semi-active dry friction damping

    Get PDF
    In this paper the authors present a semi-active engine mount with a controllable friction damper. The normal force of the friction contact is applied by an electromagnetic actuator and can be varied dynamically. The nonlinear current-force-relation of the actuator is linearized. To account for wear and assembly tolerances, an initialization method is developed, that is based on indirect measurement of the actuators inductance. The friction contact is made up of industrial friction pads and a friction rod of steel. The friction model used is suitable especially for small oscillations of the friction damper. The control policy imitates viscous damping forces that exert a minimum of harmonics. Damping is activated only when necessary. Finally the friction mount is compared to the original mount in a row of test rack experiments and also in the car

    Experimental Vapor Pressures of Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and Hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX)

    Get PDF
    In this work experimental vapor pressures of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX) were measured with transpiration method. Corresponding enthalpies of sublimation were determined to be (130.9 +/- 2.1) kJ mol(-1)and (108.1 +/- 1.6) kJ mol(-1), respectively. Along with the experimental data fitting equations are reported andp-Tdata extrapolated to 298.15 K to be 0.71 mu Pa for RDX and 823 mu Pa for TNX

    Using geospatial tools to optimize cassava agronomy trials in Nigeria and Tanzania

    Get PDF
    Cassava (Manihot esculenta) is an important staple crop for over half a billion people in Africa yet current yield at farmers’ field is only 20% of the potential yield. The African Cassava Agronomy Initiative (ACAI) project is initiated to mitigate the yield gap through developing site-specific recommendations based on a demand-driven approach. The project responds to specific agronomy-related needs of partners already engaged in cassava dissemination and value chain activities in Nigeria and Tanzania. ACAI is developing site-specific recommendation, where processing geospatial information related to climate, soil and remote sensing data is crucial. We are using spatial multivariate analysis to delineate our partners’ operational area into homogeneous clusters to ensure the representativeness of trial sites and optimize the number of trial sites for maximum operational efficiency

    Building the ACS Exams Anchoring Concept Content Map for Undergraduate Chemistry

    Get PDF
    The ability to coherently assess content knowledge throughout an entire undergraduate career represents a significant advantage for programmatic assessment strategies. Chemistry, as a discipline, has an unusual tool in this regard because of the nationally standardized exams from the ACS Exams Institute. These exams are norm-referenced and allow chemistry departments to make comparisons between the performance of their own students relative to national samples; however, currently there appears to be no systematic means for noting students’ content knowledge growth over a four-year degree. The Exams Institute is undertaking the task of organizing content along an anchoring concept or “big ideas” framework to facilitate this type of analysis

    Monolithic Perovskite Silicon Tandem Solar Cells Fabricated Using Industrial p Type Polycrystalline Silicon on Oxide Passivated Emitter and Rear Cell Silicon Bottom Cell Technology

    Get PDF
    Combining a perovskite top cell with a conventional passivated emitter and rear cell PERC silicon bottom cell in a monolithically integrated tandem device is an economically attractive solution to boost the power conversion efficiency PCE of silicon single junction technology. Proof of concept perovskite silicon tandem solar cells using high temperature stable bottom cells featuring a polycrystalline silicon on oxide POLO front junction and a PERC type passivated rear side with local aluminum p contacts are reported. For this PERC POLO cell, a process flow that is compatible with industrial, mainstream PERC technology is implemented. Top and bottom cells are connected via a tin doped indium oxide recombination layer. The recombination layer formation on the POLO front junction of the bottom cell is optimized by postdeposition annealing and mitigation of sputter damage. The perovskite top cell is monolithically integrated in a p amp; 8722;i amp; 8722;n junction device architecture. Proof of concept tandem cells demonstrate a PCE of up to 21.3 . Based on the experimental findings and supporting optical simulations, major performance enhancements by process and layer optimization are identified and a PCE potential of 29.5 for these perovskite silicon tandem solar cells with PERC like bottom cell technology is estimate

    A multicenter open-label phase II trial to evaluate nivolumab and ipilimumab for 2nd line therapy in elderly patients with advanced esophageal squamous cell cancer (RAMONA)

    Get PDF
    Background: Advanced esophageal squamous cell cancer (ESCC) is frequently diagnosed in elderly patients. The impact of 2nd line chemotherapy is poorly defined. Recent data demonstrated effectiveness of checkpoint inhibitors in different squamous cell carcinomas. Therefore, we assess combined nivolumab/ipilimumab as 2nd line therapy in elderly ESCC patients. Methods: RAMONA is a multicenter open-label phase II trial. The primary objective is to demonstrate a significant survival benefit of nivolumab/ipilimumab in advanced ESCC compared to historical data of standard chemotherapy. Primary endpoint is therefore overall survival (OS). Major secondary objective is the evaluation of tolerability. Time to QoL deterioration will thus be determined as key secondary endpoint. Further secondary endpoints are tumor response, PFS and safety. We aim to recruit a total of n = 75 subjects that have to be &gt; 65 years old. Eligibility is determined by the geriatric status (G8 screening and Deficit Accumulation Frailty Index (DAFI)). A safety assessment will be performed after a 3 cycle run-in phase of nivolumab (240 mg Q2W) to justify escalation for eligible patients to combined nivolumab (240 mg Q2W) and ipilimumab (1 mg/kg Q6W), while the other patients will remain on nivolumab only. RAMONA also includes translational research sub-studies to identify predictive biomarkers, including PD-1 and PD-L1 evaluation at different time points, establishment of organoid cultures and microbiome analyses for response prediction. Discussion: The RAMONA trial aims to implement checkpoint inhibitors for elderly patients with advanced ESCC as second line therapy. Novel biomarkers for checkpoint-inhibitor response are analyzed in extensive translational sub-studies. Trial registration: EudraCT Number 2017–002056-86; NCT03416244, registered: 31.1.2018

    Large Scale Synthesis of Nanostructured Carbon Ti4O7 Hollow Particles as Efficient Sulfur Host Materials for Multilayer Lithium Sulfur Pouch Cells

    Get PDF
    Applications of advanced cathode materials with well designed chemical components and or optimized nanostructures promoting the sulfur redox kinetics and suppressing the shuttle effect of polysulfides are highly valued. However, in the case of actual lithium sulfur Li amp; 8722;S batteries under practical working conditions, one long term obstacle still exists, which is mainly due to the difficulties in massive synthesis of such nanomaterials with low cost and ease of control on the nanostructure. Herein, we develop a facile synthesis of carbon coated Ti4O7 hollow nanoparticles C amp; 8722;Ti4O7 using spherical polymer electrolyte brush as soft template, which is scalable via utilizing a minipilot reactor. The C amp; 8722;Ti4O7 hollow nanoparticles provide strong chemical adsorption to polysulfides through the large polar surface and additional physical confinement by rich micro amp; mesopores and have successfully been employed as an efficient sulfur host for multilayer pouch cells. Besides, the sluggish kinetics of the sulfur and lithium sulfide redox mechanism can be improved by the highly conductive Ti4O7 via catalyzation of the conversion of polysulfides. Consequently, the C amp; 8722;Ti4O7 based pouch cell endows a high discharge capacity of 1003 amp; 8197;mAh amp; 8201;g amp; 8722;1 at 0.05 amp; 8197;C, a high capacity retention of 83.7 amp; 8201; after 100 amp; 8197;cycles at 0.1 amp; 8197;C, and a high Coulombic efficiency of 97.5 amp; 8201; at the 100th cycle. This work proposes an effective approach to transfer the synthesis of hollow Ti4O7 nanoparticles from lab to large scale production, paving the way to explore a wide range of advanced nanomaterials for multilayer Li amp; 8722;S pouch cell

    Daam1a mediates asymmetric habenular morphogenesis by regulating dendritic and axonal outgrowth

    Get PDF
    Although progress has been made in resolving the genetic pathways that specify neuronal asymmetries in the brain, little is known about genes that mediate the development of structural asymmetries between neurons on left and right. In this study, we identify daam1a as an asymmetric component of the signalling pathways leading to asymmetric morphogenesis of the habenulae in zebrafish. Daam1a is a member of the Formin family of actin-binding proteins and the extent of Daam1a expression in habenular neuron dendrites mirrors the asymmetric growth of habenular neuropil between left and right. Local loss and gain of Daam1a function affects neither cell number nor subtype organisation but leads to a decrease or increase of neuropil, respectively. Daam1a therefore plays a key role in the asymmetric growth of habenular neuropil downstream of the pathways that specify asymmetric cellular domains in the habenulae. In addition, Daam1a mediates the development of habenular efferent connectivity as local loss and gain of Daam1a function impairs or enhances, respectively, the growth of habenular neuron terminals in the interpeduncular nucleus. Abrogation of Daam1a disrupts the growth of both dendritic and axonal processes and results in disorganised filamentous actin and α-tubulin. Our results indicate that Daam1a plays a key role in asymmetric habenular morphogenesis mediating the growth of dendritic and axonal processes in dorsal habenular neurons
    • …
    corecore